
196 TUGboat, Volume 33 (2012), No. 2

YAWN— A TEX-enabled workflow
for project estimation

Pavneet Arora

Abstract

A framework for using TEX and its variants — the
term TEX is used generically in this article — in a
project estimation workflow is discussed. While the
emphasis here is less on the final output and more
on issues related to the upstream processing, the
framework itself does not place limits on how TEX
might be used to create more beautiful output.

1 Introduction

Part of TEX’s enduring appeal is its ability to be
molded into a workflow. As the available tools have
evolved — both in their expression (e.g., languages
such as Ruby, Python, Perl, and Lua), and in their
representation (e.g., XML) — the decoupling of the
typesetting engine from the rest of the toolset has
enabled it to adapt and stay current.

Often, these workflows relate to publishing and
the emphasis is on the form of the final output given
a marked up input. TEX’s programming capabilities
further foster integrating workflow solutions tightly
to the document.

The problems that I deal with in my work, how-
ever, typically have less to do with the final output
and more to do with upstream processing. Chief
among these is the issue of project estimation.

The challenge with project estimation is that
its evaluation is not a straightforward derivation. It
requires exploring different solutions, adjusting cost-
ing parameters iteratively, and, yes, even judgement
based on past experience to come up with a reasoned,
if not always reasonable, attempt at an estimate. In
essence, we seek the capability to run a set of guided
“what-if” scenarios.

In the end, though, one does need to represent
this estimate in a form that is meaningful to both
the supplier whose very viability relies on it, and
the customer who will use it to help decide to whom
the project will be awarded. So the desired outcome
is still a well-presented document. It is the steps
leading up to it, though, that are the focus of this
article.

2 A specific example to illustrate
the generic problem

To help illustrate the nature of the problem, let’s
begin with a specific estimation problem: develop a
cost estimate for a lighting control system: one that
covers both hardware and labour, and encompasses

design, cabling, control componentry, installation,
etc. I will explain this in some detail so that the
knottiness of the issues might be exposed. As specific
as this example is, however, the estimation problem
is a generic one and many aspects are shared across
domains.

Everyone is familiar with light switches and
dimmers in their own homes, so that is a good place
to start. Architectural designs show these on their
drawings connected to light fixtures, e.g., pot lights,
pendants, surface mount lights, under-cabinet lights,
etc. Imagine if to this mix we add:

• scene based keypads
• control processors
• power modules
• contact closure modules
• occupancy and vacancy sensors
• RS-232 interfaces to other equipment

Clearly, the complexity of the design grows im-
mensely. From an estimation perspective, though,
even this complexity is tractable, anchored as it is to
physical aspects of the design. So far the engineering
is contained.

The complexity runs quickly ahead, though,
when we have to confront the haze of the gesta-
tion period during which projects are formed, and
when details are decidedly lacking. During this time,
it is easy to become overwhelmed with the fractured
shards of the project definition. Amongst these are:

• Varying granularity of the known scope. In the
case of our lighting control system, for instance,
we may not know what types of light fixtures
are to be used, nor a breakdown on a room-
by-room basis. But we might have a rough
count of the total number of light loads whose
detailed decomposition will evolve during the
design. To use a software development analogy,
we are talking here about stubs for routines
which will be fleshed out later.

• Blended designs utilizing existing and new com-
ponents. We need only to include the new com-
ponents in the estimate, but need to ensure fit
and compatibility with existing components.

• Staged implementations requiring that the de-
sign anticipate, at the onset, the expected capac-
ity of the overall design. The design needs to be
comprehensive, but the estimate need concern
itself with only the most immediate phase of the
project.

• Interdependencies between components, i.e., a
selected component requires a host of other com-
ponents in order to function. As an example, a

Pavneet Arora



TUGboat, Volume 33 (2012), No. 2 197

wireless keypad or switch would require the pres-
ences of a wireless network to communicate with
the main processor. Otherwise, its inclusion in
a materials list is not meaningful.

• Tiered product solutions. Often, component
manufacturers will have tiered groups of solu-
tions with overlapping applications to a specific
problem. From an estimating perspective it is
good to run these alternative solutions against
a common problem specification to see how the
solution differs in cost and capability.

3 Typical solutions

Keep in mind, though, that the requirement to pro-
duce a budget does not wait for a full and final
specification. We must produce budget estimates
with varying degrees of confidence during the entire
design period.

There are two typical approaches to the esti-
mation problem, especially when they relate to a
specific vendor’s equipment: either use their design
software to create an equipment list, or their esti-
mation software to create broad-brushed budgets.
Neither approach is satisfactory.

The design software has several shortcomings:

• It is quite laborious. Often, it can take days to
create a design.

• With the absence of detailed specifications dur-
ing the early stages of the project, it is difficult
to capture this uncertainty in the design. The
design software assumes a final or near final
specification.

• The software, oriented as it is towards a design,
is specific to a single solution set. So from the
same company we might have multiple pieces of
software, one per tiered solution, into which the
design has to be entered repeatedly.

• There is no way to mark components as existing
even when the design is to be blended with
existing parts.

• There is no way to capture items outside of
the vendor’s portfolio, e.g., wire and cable costs
cannot be captured inside the design software.
This leads to manual tracking of material and
labour costs.

The estimation software, which amounts to a
simple spreadsheet, also suffers from the following:

• Most importantly, this approach ties pricing,
part numbers, and quantities to the design. If
the pricing changes, or if parts are added to
the vendor’s portfolio, one is left to migrate the
design from one spreadsheet to the next — an
approach that is error-prone at best.

• The template to capture the design is rudimen-
tary and requires specific quantities of compo-
nents. One is left to aggregate these outside of
the estimation software.

• It does not have the logic to detect interdepen-
dencies between components.

4 A workflow that works

The estimation problem kept me up for several nights
and also led me to the mirthful twin title of my talk
at TUG 2012: Sleep De(p)rived Typesetting. Sleep
deprivation is always a powerful motivator when
seeking out a solution. The secondary title stems
from the acronym that I gave to the workflow that
I assembled: YAWN. This stands for its constituent
components:

• YAML (YAML Ain’t Markup Language)
• Algebra
• Words
• Numbers

In struggling with the software solutions offered
from vendors, I yearned for greater flexibility. To my
mind, if the vendors were simply going to package
spreadsheets, why couldn’t they do so with the (say)
incredible capabilities of Lotus Improv — a superb
spreadsheet product developed for NeXTSTEP— now
sadly relegated to history.

The Wikipedia entry for Improv only reinforced
my unease regarding existing solutions. Pito Salas,
the lead developer of Improv, expressed it succinctly:

. . . it became clear that the data, views of the
data, and the formulas that acted on that data
were separate concepts. Yet in every case, the
existing spreadsheet programs required the user
to type all of these items into the same (typically
single) sheet’s cells.

What I was seeking was to decouple the spec-
ification from the materials list and the materials
list from the budget estimate with its detailed bill
of materials and labour costs.

Pito’s words pointed me to the natural object-
oriented framework: Model-View-Controller, or MVC.
That is, if one expressed the specification in a human-
readable form, and used a controller to analyse this
specification model along with component and pric-
ing models for alternative solutions, one could then
produce a view, which would satisfy both the supplier
and customer in providing a meaningful document
expressing the estimate.

I began with XML as a representation of the
model, but decided that I didn’t need all of its fea-
tures. Instead, I chose to use the simpler syntax of
YAML, a data serialization language which allows for
key-value pair hashes as well as arrays, both of which

YAWN— A TEX-enabled workflow for project estimation



198 TUGboat, Volume 33 (2012), No. 2

I did need. The implementation of the controller in
Ruby grew directly from the selection of YAML as
the model language, since Ruby is able to read and
write YAML directly and easily. I should note that
there are YAML wrappers for many other languages
as well.

Here is a small example of a design specification,
to give a flavour of the YAML representation:

:specification:

- :area:

:name: F0

:sections:

- :room:

:name: Common Areas

:design:

:loads:

- :lightload:

:type: :mlv

:fixturewattage: 50

:fixtureqty: 10

:qty: 70

:controlstations:

- :gangbox:

- :keypad:

:qty: 10

Entries preceded with a dash indicate elements
of an array, while keys that are surrounded with
colons might contain either single or compound el-
ements, and tokens prefixed with colons indicate
constants. Because it is a simple text file, one is
easily able to track the development of the design by
using version control software. Additionally, since
the structure of the document is free-form, one is
free to interject key–value pairs as comments or sec-
ondary information that might be ignored during
processing but is still valuable when reviewing the
specification.

The controller first takes a specification and
apply business logic to create a materials list. This
intermediate form was also expressed in YAML, again
allowing for visual inspection. In some cases, a re-
quest for pricing is given already as a predefined
materials list with no design specification required.
By having this intermediate form as a text represen-
tation, one is able to create it directly as an input

to the remainder of the workflow. As a secondary
step this materials list was combined with a pricing
model also expressed in YAML to create a complete
bill of materials. Different controllers and/or pricing
models may be used against a common specification
to explore their impact on the generated estimate.

Which leads me to the view . I believe that if we
consider TEX as a toolset that can produce views on
demand, we have rounded out the framework into a
workable form.

In my estimation workflow, TEX’s capabilities
are used only lightly — in essence to convert tabular
data of the bill of materials into formatted output —
but as the document requirements grow, I can easily
enhance the output into more pleasing forms. I also
envision doing a summary document that creates
an estimation diff that compiles and compares the
costs of alternative product solutions.

5 Conclusions

TEX works very effectively in the standard object-
oriented Model-View-Controller framework. By iso-
lating specification and the control logic from final
document production in the manner prescribed by
the MVC framework and its associated design pat-
terns, TEX can be of tremendous value in enabling
workflows outside of the domain of publishing.

References

[1] Oren Ben-Kiki, Clark Evans, and Ingy. YAML
Ain’t Markup Language (YAML) version 1.2.
http://www.yaml.org/spec, October 2009.

[2] Trygve Reenskaug. MVC. http://heim.ifi.

uio.no/~trygver/themes/mvc/mvc-index.

html.

[3] Wikipedia. Lotus Improv. http://en.

wikipedia.org/wiki/Lotus_Improv#ATG.

� Pavneet Arora
pavneet_arora (at)

bespokespaces dot com

http://blog.bansisworld.org

Pavneet Arora


